Cohomology of the Boundary of Siegel Modular Varieties of Degree Two, with Applications

نویسندگان

  • J. W. HOFFMAN
  • S. H. WEINTRAUB
  • Ronnie Lee
چکیده

Let A2(n) = Γ2(n)\S2 be the quotient of Siegel’s space of degree 2 by the principal congruence subgroup of level n in Sp(4, Z). This is the moduli space of principally polarized abelian surfaces with a level n structure. Let A2(n) ∗ denote the Igusa compactification of this space, and ∂A2(n) ∗ = A2(n) ∗−A2(n) its “boundary”. This is a divisor with normal crossings. The main result of this paper is the determination of H∗(∂A2(n) ∗) as a module over the finite group Γ2(1)/Γ2(n). As an application we compute the cohomology of the arithmetic group Γ2(3).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Siegel modular varieties and Borel-Serre compactification of modular curves

To motivate the study of Siegel modular varieties and Borel-Serre compactifications let me recall Scholze’s theorem on torsion classes. We start from an Hecke eigenclass h ∈ H (Xg/Γ,Fp) where Xg is the locally symmetric domain for GLg, and we want to attach to it a continuous semisimple Galois representation ρh : GQ → GLg(Fp) such that the characteristic polynomials of the Frobenius classes at ...

متن کامل

Finite Group Actions on Siegel Modular Spaces

The theory of nonabelian cohomology is used to show that the set of fixed points of a finite group acting on a Siegel modular space is a union of Shimura varieties

متن کامل

Hyperbolicity, automorphic forms and Siegel modular varieties

We study the hyperbolicity of compactifications of quotients of bounded symmetric domains by arithmetic groups. We prove that, up to an étale cover, they are Kobayashi hyperbolic modulo the boundary. Applying our techniques to Siegel modular varieties, we improve some former results of Nadel on the non-existence of certain level structures on abelian varieties over complex function fields.

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

GALOIS REPRESENTATIONS MODULO p AND COHOMOLOGY OF HILBERT MODULAR VARIETIES

The aim of this paper is to extend some arithmetic results on elliptic modular forms to the case of Hilbert modular forms. Among these results let’s mention : − the control of the image of the Galois representation modulo p [37][35], − Hida’s congruence criterion outside an explicit set of primes p [21], − the freeness of the integral cohomology of the Hilbert modular variety over certain local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002